AsahiKASEI

ASAHI KASEI EMD

GENERAL DESCRIPTION

AKD4673 is an evaluation board for the AK4673, stereo CODEC with built-in MIC/HP amplifier and TSC. The AKD4673 can evaluate A/D converter and D/A converter of the CODEC separately in addition to loopback mode (A/D \rightarrow D/A). The AKD4673 also has the digital audio interface and can achieve the interface with digital audio systems via opt-connector. Moreover, the AKD4673 can also evaluate A/D converter of the TSC with the control software.

■ Ordering guide

AKD4673 --- Evaluation board for AK4673
(Cable for connecting with printer port of IBM-AT, compatible PC and control software are packed with this. This control software does not support Windows NT.)

FUNCTION

- DIT/DIR with optical input/output
- RCA connector for an external clock input
- 10pin Header for serial control mode
- Touch-Panel I/F

Figure 1. AKD4673 Block Diagram

* Circuit diagram and PCB layout are attached at the end of this manual

■ Operation sequence

(1) Set up the power supply lines.
(1-1) In case of using the regulator.
Set up the jumper pins.

JP	JP3	JP4	JP5	JP6	JP7	JP106	JP107	JP109
	HVDD_SEL	AVDD_SEL	DVDD_SEL	TVDD_SEL	VCC_SEL	TVDD2	TVDD1	TSVDD
State	Short							

Set up the power supply lines.
\(\left.$$
\begin{array}{lll}{[\text { REG] (red) }} & =5.0 \mathrm{~V} & \begin{array}{l}: \text { for regulator (3.3V output : HVDD, AVDD, TVDD1, TVDD2, } \\
\text { TSVDD, DVDD of AK4673) }\end{array}
$$

[D3V] (orange) \& =2.7 \sim 3.6 \mathrm{~V} \& : for AK4114 and logic (typ. 3.3V)\end{array}\right]\)| [AGND] (black) | $=0 \mathrm{~V}$ | for analog ground |
| :--- | :--- | :--- |
| [DGND] (black) | $=0 \mathrm{~V}$ | : for logic ground |

(1-2) In case of using the power supply connectors.
Set up the jumper pins.

JP	JP3	JP4	JP5	JP6	JP7	JP106	JP107	JP109
	HVDD_SEL_	AVDD_SEL	DVDD_SEL	TVDD_SEL	VCC_SEL	TVDD2	TVDD1	TSVDD
State	Open	Open	Open	Open	Open	Short	Short	Short

Set up the power supply lines.

[HVDD] (orange)	$=1.6 \sim 3.6 \mathrm{~V}:$ for HVDD of AK4673 (typ. 3.3V)	
[AVDD] (orange)	$=1.6 \sim 3.6 \mathrm{~V}$	$:$ for AVDD and PVDD of AK4673 (typ. 3.3V)
[DVDD] (orange)	$=1.6 \sim 3.6 \mathrm{~V}$	$:$ for DVDD of AK4673 (typ. 3.3V)
[TVDD] (orange)	$=1.6 \sim 3.6 \mathrm{~V}:$ for TVDD1, TVDD2, TSVDD of AK4673 (typ. 3.3V)	
[VCC] (orange)	$=1.6 \sim 3.6 \mathrm{~V}:$ for logic (typ. 3.3V: = DVDD)	
[D3V] (orange)	$=2.7 \sim 3.6 \mathrm{~V}:$ for AK4114 and logic (typ. 3.3V)	
[AGND] (black)	$=0 \mathrm{~V}$: for analog ground
[DGND] (black)	$=0 \mathrm{~V}$: for logic ground

* Each supply line should be distributed from the power supply unit.
(2) Set up the evaluation mode, jumper pins and DIP switches. (See the followings.)
(3) Power on.

The AK4673 and AK4114 should be resets once bringing SW1 (PDN) and SW2 (DIR) "L" upon power-up.

■ Evaluation mode

In case of AK4673 evaluation using AK4114, it is necessary to correspond to audio interface format for AK4673 and AK4114. About AK4673's audio interface format, refer to datasheet of AK4673. About AK4114's audio interface format, refer to Table 2 in this manual.

Evaluation of CODEC

(1) External Slave Mode
(1-1) Evaluation of A/D using DIT of AK4114
(1-2) Evaluation of D/A using DIR of AK4114
(1-3) Evaluation of Loop-back using AK4114 <default>
(1-4) Evaluation of Loop-back that master clock is fed externally, BICK and LRCK are divided with a board
(2) External Master Mode
(2-1) Evaluation of A/D using DIT of AK4114
(2-2) Evaluation of D/A using DIR of AK4114
(2-3) Evaluation of Loop-back using AK4114
(2-4) Evaluation of Loop-back that master clock is fed externally
(3) PLL Slave Mode
(3-1) PLL Reference Clock : MCKI pin
(3-1-1) Evaluation of A/D, D/A using PORT3 (DSP)
(3-1-2) Evaluation of Loop-back that master clock is fed externally, BICK and LRCK are divided with a board
(3-2) PLL Reference Clock : BICK or LRCK pin
(3-2-1) Evaluation of A/D using DIT of AK4114
(3-2-2) Evaluation of D/A using DIR of AK4114
(3-2-3) Evaluation of Loop-back using AK4114
(4) PLL Master Mode
(4-1) Evaluation of Loop-back using AK4114
(4-2) Evaluation of Loop-back that master clock is fed externally
(4-3) Evaluation of Internal Loop-back using clock is fed externally

Evaluation of TSC

(1) Position, Pen Pressure

Evaluation of CODEC

JP104, JP102 should be set to short. JP103, JP105 should be set to open.

(1) External Slave Mode

When PMPLL bit is " 0 ", the AK4673 becomes EXT mode. Master clock is input from MCKI pin, the internal PLL circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate are MCKI (256 fs , 512 fs or 1024 fs), LRCK (fs) and BICK ($\geq 32 \mathrm{fs}$). The master clock (MCKI) should be synchronized with LRCK. The phase between these clocks does not matter. The input frequency of MCKI is selected by FS1-0 bits.
JP23 (M/S) should be set to "Slave". In addition, the register of AK4673 should be set to "EXT Slave Mode".

Figure 2. EXT Slave Mode
(1-1) Evaluation of A/D using DIT of AK4114
PORT2 (DIT) and X1 (X'tal) are used. Nothing should be connected to PORT1 (DIR) and PORT3 (DSP). The jumper pins should be set to the following.

(1-2) Evaluation of D/A using DIR of AK4114
PORT1 (DIR) is used. Nothing should be connected to PORT2 (DIT) and PORT3 (DSP).
The jumper pins should be set to the following.

When AK4114 is used, JP16 (MKFS) and JP17 (BCFS) are not used. Therefore, JP16 (MKFS) should be set to " 256 fs " and JP23 (BCFS) should be set to " 64 fs ".

* The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , this evaluation mode can't be used.
(1-3) Evaluation of Loop-back using AK4114 <Default>
X1 (X 'tal) is used. Nothing should be connected to PORT1 (DIR) and PORT3 (DSP). The jumper pins should be set to the following.

When AK4114 is used, JP16 (MKFS) and JP17 (BCFS) are not used. Therefore, JP16 (MKFS) should be set to " 256 fs " and JP23 (BCFS) should be set to " 64 fs ".

* The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , this evaluation mode can't be used.
(1-4) Evaluation of Loop-back where master clock is fed externally, BICK and LRCK are generated by on-board divider.

J 11 (EXT) is used. MCKI is supplied from J11 (EXT). BICK and LRCK are generated by 74 HC 4040 on AKD4671-A. Nothing should be connected to PORT1 (DIR), PORT2 (DIT) and PORT3 (DSP).
The jumper pins should be set as the following.

When a termination (51Ω) is unnecessary, please set JP14 (EXT) open.
JP16 (MKFS), JP17 (BCFS), and JP20 (LRCK) should be set according to the frequency of MCLK, BICK and LRCK.

(2) External Master Mode

The AK4673 becomes EXT Master Mode by setting PMPLL bit = " 0 " and M/S bit = " 1 ". Master clock can be input via MCKI pin, without using on-chip PLL circuit. The clock required to operate is MCKI ($256 \mathrm{fs}, 512 \mathrm{fs}$, or 1024 fs). The input frequency of MCKI is selected by FS1-0 bits.
JP23 (M/S) should be set to "Master". In addition, the register of AK4673 should be set to "EXT Master Mode".

Figure 3. EXT Master Mode
(2-1) Evaluation of A/D using DIT of AK4114
X1 (X'tal) and PORT2 (DIT) are used. Nothing should be connected to PORT1 (DIR) and PORT3 (DSP). In Master Mode, BICK and LRCK of AK4671 should be input to AK4114. Please refer to Table 2 on page 13. BCKO bit $=$ " 1 " (Register Address 04H)
The jumper pins should be set as the following.

* The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , this evaluation mode can't be used.

(2-2) Evaluation of D/A using DIR of AK4114

PORT1 (DIR) is used. Nothing should be connected to PORT2 (DIT) and PORT3 (DSP).
In Master Mode, BICK and LRCK of AK4671 should be input to AK4114. Please refer to Table 2 on page 13. BCKO bit = " 1 " (Register Address 04H).
The jumper pins should be set as the following.

[^0](2-3) Evaluation of Loop-back using AK4114
X1 (X'tal) is used. Nothing should be connected to PORT1 (DIR), PORT2 (DIT) and PORT3 (DSP). The jumper pins should be set as the following.

JP16 (MKFS) should be set according to the frequency of MCLK.
(2-4) Evaluation of Loop-back where master clock is fed externally
J11 (EXT) is used. MCKI is supplied from J11 (EXT). BICK and LRCK are generated by 74 HC 4040 on AKD4671-A. Nothing should be connected to PORT1 (DIR), PORT2 (DIT) and PORT3 (DSP).
The jumper pins should be set as the following.

*When a termination (51Ω) is unnecessary, please set JP14 (EXT) open.
JP16 (MKFS) should be set according to the frequency of MCLK.

(3) PLL Slave Mode

A reference clock of PLL is selected among the input clocks to MCKI, BICK or LRCK pin. The required clock to the AK4673 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits.
BICK and LRCK inputs should be synchronized with MCKO output. The phase between MCKO and LRCK dose not matter. MCKO pin outputs the frequency selected by PS1-0 bits and the output is enabled by MCKO bit.
Sampling frequency can be selected by FS3-0 bits.
JP23 (M/S) should be set to "Slave". In addition, the register of AK4673 should be set to "PLL Slave Mode".
(3-1) PLL Reference Clock : MCKI pin

Figure 4. PLL Slave Mode 1 (PLL Reference Clock: MCKI pin)
(3-1-1) Evaluation of A/D, D/A using PORT3 (DSP)
PORT3 (DSP) is used. Nothing should be connected to PORT1 (DIR), PORT2 (DIT) and J11 (EXT).
SDTI, SDTO, LRCK and BICK of PORT3 are respectively connected with SDTO, SDTI, LRCK and BICK of DSP. Connect the test pin (MCKO) to DSP when MCKO is supplied to DSP.
The jumper pins should be set as the following.

(3-1-2) Evaluation of Loop-back that master clock is fed externally, BICK and LRCK are divided with a board

J11 (EXT) is used. MCKI is supplied from J11 (EXT). BICK and LRCK are generated by 74HC4040 on AKD4671-A.Nothing should be connected to PORT1 (DIR), PORT2 (DIT) and PORT3 (DSP). The jumper pins should be set as the following.

*When a termination (51Ω) is unnecessary, please set JP14 (EXT) open.
JP16 (MKFS) should be set to MCKO; JP17 (BCFS), and JP20 (LRCK) should be set according to the frequency of BICK and LRCK.
(3-2) PLL Reference Clock: BICK or LRCK pin
AK4673

Figure 5. PLL Slave Mode 2 (PLL Reference Clock: BICK pin)

AK4673

Figure 6. PLL Slave Mode 2 (PLL Reference Clock: LRCK pin)
(3-2-1) Evaluation of A/D using DIT of AK4114
X1 (X'tal) and PORT2 (DIT) are used. Nothing should be connected to PORT1 (DIR), PORT3 (DSP) and J11 (EXT).
The jumper pins should be set as the following.

* The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , this evaluation mode can't be used.
(3-2-2) Evaluation of D/A using DIR of AK4114
PORT1 (DIR) is used. Nothing should be connected to PORT2 (DIT), PORT3 (DSP) and J11 (EXT). The jumper pins should be set as the following.

* The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , this evaluation mode can't be used.
(3-2-3) Evaluation of Loop-back using AK4114
X1 (X'tal) is used. Nothing should be connected to PORT1 (DIR), PORT2 (DIT), PORT3 (DSP) and J11 (EXT).
The jumper pins should be set as the following.

* The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , this evaluation mode can't be used.

(4) PLL Master Mode

When an external clock ($11.2896 \mathrm{MHz}, 12 \mathrm{MHz}, 12.288 \mathrm{MHz}, 13 \mathrm{MHz}, 13.5 \mathrm{MHz}, 19.2 \mathrm{MHz}, 24 \mathrm{MHz}, 26 \mathrm{MHz}$ or 27 MHz) is input to MCKI pin, the MCKO, BICK and LRCK clocks are generated by an internal PLL circuit. The MCKO output frequency is selected by PS1-0 bits and the output is enabled by MCKO bit. The BICK output frequency is selected between 32 fs or 64 fs , by BCKO bit.
JP23 (M/S) should be set to "Master". In addition, the register of AK4673 should be set to "PLL Master Mode".

Figure 7. PLL Master Mode
(4-1) Evaluation of Loop-back using AK4114
X1 (X'tal) is used. Nothing should be connected to PORT1 (DIR), PORT3 (DSP) and J11 (EXT).
Using the AK4673's internal PLL it is possible to evaluate various sampling frequencies.
The jumper pins should be set to the following.

(4-2) Evaluation of Loop-back that master clock is fed externally
J11 (EXT) is used. Nothing should be connected to PORT1 (DIR) and PORT3 (DSP). Exclude X'tal oscillator from X1. Using the AK4673's internal PLL it is possible to evaluate various sampling frequencies.
The jumper pins should be set to the following.

(4-3) Evaluation of Internal Loop-back using clock is fed externally
J11 (EXT) is used. Nothing should be connected to PORT1(DIR) and PORT3 (DSP).
It can be evaluated at internal loop-back mode (LOOP bit = " 1 ").
Using the AK4673's internal PLL it is possible to evaluate various sampling frequencies.
The jumper pins should be set to the following.

Evaluation of TSC

PORT4 (CTRL) should be directly connected to the parallel port. (Figure 9) JP103, JP105 should be set to short. JP102, JP104 should be set to open.

(1) Position, Pen Pressure

4-wire touch-panel (X+, X-, Y+ and Y-) should be connected to J100 connector as the following figure.

Figure 8. Connect of Touch Panel

■ DIP Switch set up

[S1] : Mode Setting of AK4114 and AK4673
ON is " H ", OFF is " L ".

No.	Name	ON ("H")	OFF ("L")
1	DIF2	AK4114 Audio Format Setting	Default
2	DIF1		ON
	OFF		
4	DIF0	OCKS1	AK4114 Master Clock Setting : See Table 3
5	CAD0	OFF	
6	I2C		OFF

Table 1. Mode Setting for AK4673 and AK4114

Table 2. Setting for AK4114 Audio Interface Format

OCKS1	MCKO1	X'tal
0	256 fs	256 fs
1	512 fs	512 fs

Table 3. AK4114 Master Clock Setting

■ Other jumper pins set up

Main Board

[JP1] (GND): Analog ground and Digital ground
OPEN: Separated.
SHORT: Common. (The connector "DGND" can be open.) <Default>
[JP3] (HVDD_SEL): HVDD of the AK4673
OPEN: HVDD is supplied from "HVDD" jack.
SHORT: Supplied from the regulator ("HVDD" jack should be open). <Default>
[JP4] (AVDD_SEL): AVDD of the AK4673
OPEN: AVDD is supplied from "AVDD" jack.
SHORT: Supplied from the regulator ("AVDD" jack should be open). $<$ Default $>$
[JP5] (DVDD_SEL): DVDD of the AK4673
OPEN: DVDD is supplied from "DVDD" jack.
SHORT: DVDD is supplied from "AVDD" ("DVDD" jack should be open). <Default>
[JP6] (TVDD_SEL): TVDD of the AK4673
OPEN: TVDD is supplied from "TVDD" jack.
SHORT: TVDD is supplied from "DVDD" ("TVDD" jack should be open). <Default>
[JP7] (VCC_SEL): VCC of the AK4673
OPEN: VCC is supplied from "VCC" jack.
SHORT: VCC is supplied from "TVDD" ("VCC" jack should be open). <Default>
[JP16] (MKFS): MCLK Frequency
256fs: 256fs. <Default>
512fs: $\quad 512 \mathrm{fs}$.
1024fs: 1024fs.
384/768fs: 384fs
MCKO: MCKO is used.
[JP17] (BCFS): BICK Frequency
32fs: $\quad 32 \mathrm{fs}$ (When MCLK is 256 fs or 512 fs or 768 fs or 1024 fs .)
64 fs : $\quad 64 \mathrm{fs}$ (When MCLK is 256 fs or 512 fs or 768 fs or 1024 fs .) $<$ Default>
32fs-384: 32fs (When MCLK is 384fs.)
64fs-384: 64fs (When MCLK is 384fs.)
[JP22] (4114_MCKI): AK4114 Clock Source
OPEN: X'tal of AK4114 is used. <Default>
SHORT: X'tal of AK4114 is not used.
[JP25] (CTRL_SEL):Serial Control Interface (Must be set to I2C)
3-WIRE: Invalid
I2C: $\quad I^{2}$ C-bus Control Mode $<$ Default $>$

Sub Board

[JP100] (I2CA_SEL): I2C (Must be set to H)
H: \quad Enable < Default>
L: Unable

■ The function of the toggle SW

[SW1] (PDN): Power down of AK4673. Keep "H" during normal operation.
[SW2] (DIR): Power down of AK4114. Keep "H" during normal operation. Keep "L" when AK4114 is not used.

■ Indication for LED

[LED1] (ERF): Monitor INT0 pin of the AK4114. LED turns on when some error has occurred to AK4114.

■ Serial Control

The AK4673 can be controlled via the printer port (parallel port) of IBM-AT compatible PC. Connect PORT4 (CTRL) with PC by 10 wire flat cable packed with the AKD4673.Table 3 shows switch and jumper settings for serial control.

Figure 9. Connect of 10 wire flat cable

Mode		S1		JP25	JP100
		CAD0	CTRL_SEL	I2CA-SEL	
I2C	CAD0 $=0$	ON	OFF	I2C	H
	CAD0 $=1$	ON	ON		

Table 4. Serial Control Setting

Analog Input/Output Circuits

(1) Input Circuits
(1-1) LIN1/RIN1, LIN2/RIN2, LIN3/RIN3, LIN4/RIN4 Input Circuit

Figure 10. LIN1/RIN1, LIN2/RIN2, LIN3/RIN3, LIN4/RIN4 Input Circuit

LIN2/RIN2, LIN3/RIN3, LIN4/RIN4 shares J2/J3.
JP8 (LIN_SEL) and JP9 (RIN_SEL) select each path.
When microphone is connected to J1, JP1 12 and JP113 should be short.
When LIN3/RIN3 paths of AK4673 are used, JP101 and JP108 should be set as below.
AIN3bit =" 1 " (Register Address 21H)

When MIN (shared with LIN3) Input path of AK4673 is used, JP108 should be set as below. AIN3bit ="0" (Register Address 21H)

\bullet	MIN
\bullet	
\bullet	LIN3

(2) Output Circuits
(2-1) HP Output Circuit

Figure 11. HP Output Circuit
(2-1-1) In case that signal is output from J7 and J8.

(2-1-2) In case that signal is output from J9.

(2-2) LOUT/ROUT (LOP/LON) Output Circuit

Figure 12. LOUT/ROUT(LOP/LON) Output Circuit
(2-1-1) In case that signal is output from J5 and J6.

(2-1-1) In case that signal is output from J 9 .

* AKM assumes no responsibility for the trouble when using the above circuit examples.

Control Software Manual For the Evaluation of CODEC

■ Set-up of evaluation board and control software

1. Set up the AKD4673-A according to previous term.
2. Connect IBM-AT compatible PC with AKD4673-A by 10-line type flat cable (packed with AKD4673-A). Take care of the direction of 10 pin header. (Please install the driver in the CD-ROM when this control software is used on Windows 2000/XP. Please refer "Installation Manual of Control Software Driver by AKM device control software". In case of Windows $95 / 98 / \mathrm{ME}$, this installation is not needed. This control software does not operate on Windows NT.)
3. Insert the CD-ROM labeled "AK4673-A Evaluation Kit" into the CD-ROM drive.
4. Access the CD-ROM drive and double-click the icon of "AKD4673.exe" to set up the control program.
5. Then please evaluate according to the follows.

■ Operation flow

Keep the following flow.

1. Set up the control program according to explanation above.
2. Click "Port Reset" button.

■ Explanation of each buttons

[Port Reset]: Set up the USB interface board (AKDUSBIF-A).
[Write default]: Initialize the register of AK4673.
[All Write] : Write all registers that is currently displayed.
[Function1]: Dialog to write data by keyboard operation.
[Function2]: Dialog to write data by keyboard operation.
[Function3] : The sequence of register setting can be set and executed.
[Function4]: The sequence that is created on [Function3] can be assigned to buttons and executed.
[Function5]: The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed.
[SAVE]: Save the current register setting.
[OPEN]: Write the saved values to all register.
[Write]: Dialog to write data by mouse operation.
[Filter]: Set Programmable Filter (FIL1, FIL3, EQ) of AK4673 easily.

■ Indication of data

Input data is indicated on the register map. Red letter indicates "H" or " 1 " and blue one indicates " L " or " 0 ". Blank is the part that is not defined in the datasheet.

■ Explanation of each dialog

1. [Write Dialog]: Dialog to write data by mouse operation

There are dialogs corresponding to each register.
Click the [Write] button corresponding to each register to set up the dialog. If you check the check box, data becomes " H " or " 1 ". If not, " L " or " 0 ".

If you want to write the input data to AK4673, click [OK] button. If not, click [Cancel] button.
2. [Function1 Dialog]: Dialog to write data by keyboard operation

Address Box: Input registers address in 2 figures of hexadecimal. Data Box: Input registers data in 2 figures of hexadecimal.

If you want to write the input data to AK4673, click [OK] button. If not, click [Cancel] button.
3. [Function2 Dialog] : Dialog to evaluate IVOL and DVOL

Address Box:	Input registers address in 2 figures of hexadecimal.
Start Data Box:	Input starts data in 2 figures of hexadecimal.
End Data Box:	Input end data in 2 figures of hexadecimal.
Interval Box:	Data is written to AK4673 by this interval.
Step Box:	Data changes by this step.
Mode Select Box:	
If you check this check box, data reaches end data, and returns to start data. [Example] \quad Start Data $=00$, End Data $=09$ Data flow: 0001020304050607080909080706050403020100	

If you do not check this check box, data reaches end data, but does not return to start data.
[Example] Start Data = 00, End Data $=09$ Data flow: 00010203040506070809

If you want to write the input data to AK4673, click [OK] button. If not, click [Cancel] button.

4. [Save] and [Open]

4-1. [Save]
Save the current register setting data. The extension of file name is "akr".
(Operation flow)
(1) Click [Save] Button.
(2) Set the file name and push [Save] Button. The extension of file name is "akr".

4-2. [Open]
The register setting data saved by [Save] is written to AK4673. The file type is the same as [Save].
(Operation flow)
(1) Click [Open] Button.
(2) Select the file (*.akr) and Click [Open] Button.

5. [Function3 Dialog]

The sequence of register setting can be set and executed.
(1) Click [F3] Button.
(2) Set the control sequence.

Set the address, Data and Interval time. Set " -1 " to the address of the step where the sequence should be paused.
(3) Click [Start] button. Then this sequence is executed.

The sequence is paused at the step of Interval="-1". Click [START] button, the sequence restarts from the paused step.
This sequence can be saved and opened by [Save] and [Open] button on the Function3 window. The extension of file name is "aks".

Figure 13. Window of [F3]

6. [Function4 Dialog]

The sequence that is created on [Function3] can be assigned to buttons and executed. When [F4] button is clicked, the window as shown in Figure 14 opens.

Figure 14. [F4] window

6-1. [OPEN] buttons on left side and [START] buttons
(1) Click [OPEN] button and select the sequence file (*.aks).

The sequence file name is displayed as shown in Figure 15.

Figure 15. [F4] window(2)
(2) Click [START] button, then the sequence is executed.

3-2. [SAVE] and [OPEN] buttons on right side
[SAVE] : The sequence file names can assign be saved. The file name is *.ak4.
[OPEN] : The sequence file names assign that are saved in *.ak4 are loaded.

3-3. Note

(1) This function doesn't support the pause function of sequence function.
(2) All files need to be in same folder used by [SAVE] and [OPEN] function on right side.
(3) When the sequence is changed in [Function3], the file should be loaded again in order to reflect the change.

7. [Function5 Dialog]

The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed. When [F5] button is clicked, the following window as shown in Figure 16 opens.

Figure 16. [F5] window

7-1. [OPEN] buttons on left side and [WRITE] button
(1) Click [OPEN] button and select the register setting file (*.akr).

The register setting file name is displayed as shown in Figure 17.
(2) Click [WRITE] button, then the register setting is executed.

Figure 17. [F5] windows (2)

7-2. [SAVE] and [OPEN] buttons on right side
[SAVE] : The register setting file names assign can be saved. The file name is *.ak5.
[OPEN] : The register setting file names assign that are saved in *.ak5 are loaded.

7-3. Note

(1) All files need to be in same folder used by [SAVE] and [OPEN] function on right side.
(2) When the register setting is changed by [Save] Button in main window, the file should be loaded again in order to reflect the change.

8. [Filter Dialog]

This dialog can easily set the AK4673's programmable filter.

Figure 18. [Filter] window
$8-1$. Value input columns on left side
[Sampling Rate] \rightarrow Input value of sampling frequency [unit : Hz] <default : 44100>
[Cut Off Frequency of FIL1] \rightarrow Input value of cut off frequency of FIL1 [unit : Hz] <default : 150>
[Cut Off Frequency of FIL3] \rightarrow Input value of cut off frequency of FIL3 [unit : Hz] <default : 4000>
[Pole Frequency of EQ] \rightarrow Input value of pole frequency of EQ [unit : Hz]
[Zero Frequency of EQ] \rightarrow Input value of zero frequency of EQ [unit : Hz]
[FIL3 GAIN]
[EQ GAIN]
\rightarrow Input value of gain of FIL3 ($0 \sim-10 \mathrm{~dB}$) [unit : dB]
\rightarrow Input value of gain of EQ $(+12 \sim 0 \mathrm{~dB})$ [unit : dB]

8-2. Check box on left side

Check Box	Check	Check off
FIL1	FIL1 bit ="1"	FIL1 bit ="0"
FIL3	FIL3 bit ="1"	FIL3 bit ="0"
EQ	EQ bit ="1"	EQ bit = " 0 "
LPF of FIL1	F1AS bit ="1"(LPF)	F1AS bit ="0"(HPF)
LPF of FIL3	F3AS bit ="1"(LPF)	F3AS bit ="0"(HPF)

8-2. [Register Setting] panel and [Register Setting] button on right side
Click [Register setting] button, then filter coefficient set by 8-1 and 8-2 is written on [Register setting] panel. (It is also written to the actual control register of the AK4673.)

Control Software Manual For the Evaluation of TSC

Parallel Port Driver install

Attached software is the application software, which checks the function of the AK4673. Windows(R) Win 98, Win 2 K , and Win XP are supported. However, to make it operate on Win2K and XP, it is necessary to install driver in advance. Please follow a procedure with reference to DriverSetupe.pdf. Installation of a driver is unnecessary to use it by the Windows 98 system.

Run the software (AK4673_TSC.exe)
This software valuates the function of the AK4673 TSC block. First match Port Address of your PC environment. Measurements with pressed by pen or stylus on the touch panel are started when the start button is clicked after select Channel Selection, MODE, and Power Down 0. A result will be displayed on AD OUT Section. When carrying out position detection, the position where pen clicked on the touch panel is measured.

Operation can set up two control commands. Continuous operation can be performed. Each data (mean, max, and min) is also displayed at the same time. PENIRQN can be seen by the break of a command.

Figure 19. TSC control soft window

Trouble Shooting

1. Application error is occurred and doesn't start up

If the operating system is Window2000/XP, Please install AKM port driver in advance of run the AK4673_TSC.exe.
2. MEAN value in AD OUT section does not change until click start button (cannot write control command to AK4673).

Please set the port address correctly to your PC platform environment.
3. The mean, max, min value doesn't change wherever the pen is pressed down on the panel.

There is a possibility of the trouble of the contact of the relay connector (plat 8pin-8-wire female dip converter) that connects the touch panel. Measure panel seat resistance (XP-XN, YP-YN), and check the resistance. Generally, the panel seat resistance is hundreds of Ω. There is a possibility that the touch panel is not correctly connected if the resistance is over thousands of $\mathrm{k} \Omega$. Please connect the connector and check the resistance value again.

Revision History

Date (YY/MM/DD)	Manual Revision	Board Revision	Reason	Contents
$07 / 05 / 30$	KM086000	0	First edition	

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.

When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei EMD Corporation (AKEMD) or authorized distributors as to current status of the products.

- AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKEMD products are neither intended nor authorized for use as critical components ${ }_{\text {Notel }}$ in any safety, life support, or other hazard related device or system ${ }_{\text {Note2) }}$, and AKEMD assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKEMD. As used here:
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any and all claims arising from the use of said product in the absence of such notification.

Title	AKD4673-A	
Size	${ }^{\text {Document Number }}$ Power Supply, I/O	${ }_{0}^{\text {Rev }}$
Date:	Manday, December 11,2006 Sheet 2	of

AKD4673-A-57BGA L1 PATTERN

AKD4370-A L1

[^0]: * The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , this evaluation mode can't be used.

